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Liquid crystals: a chemical physicist’s view

GEOFFREY R. LUCKHURST

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom

(Received 6 September 2005; accepted 12 October 2005 )

This paper has allowed me the rare opportunity and pleasure of acknowledging those who
have played important roles in my scientific career. It has also enabled me to report work in
the field of liquid crystals which has gone unpublished. The particular topics have been
selected because they illustrate the areas of liquid crystal science with which I have been
especially concerned. The predicted phase diagram of mixtures of rods and spheres is both
intricate and interesting. The ability to test these predictions experimentally has required the
use of quasi-spherical solutes such as tetraethyltin. The reasons for the failure of the
experiments to conform to theory are investigated and explained in terms of the orientational
order of this flexible molecule, determined using deuterium NMR spectroscopy. The
tetrapodes are more exotic tetrahedral structures in which four mesogenic groups are linked
to a central atom or group. The massive flexibility of such molecules poses a severe problem
for the prediction of their liquid crystal behaviour. Here a solution to this problem is
presented and used to predict the dependence of the transitional properties of the tetrapodes
on the spacer length and the mode of its attachment to the mesogenic group. The same
molecular field approach has been employed to predict the variation of the transitional
properties of liquid crystal dimers with the length of the spacer. It is found that for spacers
containing about 12 or more atoms the odd–even effect predicted for the transitional
properties varies significantly depending on the model used to describe the spacer
conformation. That is, whether the torsional angles defining the conformations are taken
to be discrete or continuous. Cyanobiphenyl dimers with spacers containing up to 24 atoms
have been synthesized to test these predictions. The Gay–Berne potential has proved to be an
important model with which to study liquid crystal behaviour using simulation techniques. By
joining two Gay–Berne particles together with a flexible ethane link we have constructed a
Gay–Berne dimer and have been able to explore the properties of this mesogen. In particular
its phase behaviour, the novel structure of the smectic A phase and how the conformational
distribution alters with the phase have been studied. Despite its attractive features there are
relatively simple systems for which the Gay–Berne potential is not suitable. These include
molecules with a spherocylindrical shape and those with a sphere embedded at the centre of
such a structure. In fact the shapes of many mesogenic molecules approximate to the former,
and certain metallomesogenic molecules have shapes like the latter. The novel Corner S-
function potential provides a valuable way to represent such cylindrically symmetric shapes
and we use this to simulate the behaviour of these systems. It is found that the sphere has a
major influence on the phase behaviour as well as on the crystal structure.

1. Introduction

The Symposium held at Southampton to mark my 65th

Birthday proved to be a wonderful occasion not only for

me but, I believe, for all those present. The science

presented and discussed was truly excellent and it was a
special occasion at which to meet so many friends. I am

really indebted to all of those who contributed to the

success of the Symposium; to the participants and to the

speakers as well as to the Organizing Group, George

Attard, David Dunmur, Jim Emsley, Tim Sluckin and

especially to Martin Bates who worked so hard and so

effectively to make every aspect of this occasion just right.

I also wish to add my thanks to the sponsors of the

Meeting, Merck UK Ltd., Taylor & Francis Ltd. and

Unilever Research (Port Sunlight); without their generous

support the event would clearly not have been possible.

I have had the pleasure and privilege of helping to

unravel some of the mysteries of liquid crystals for over

40 years. The vast majority of this time has been spent

as a member of the Department now the School of

Chemistry at the University of Southampton. This has

provided a challenging, stimulating and supportive

environment; I would not have wished to be anywhere

else. My years at Southampton benefited immensely

from a stream of able, talented and individual research

students and postdoctoral fellows. It was a joy to have
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worked with them and has given me real pleasure and

pride to see how their careers have developed. The

award of Professorships both here and overseas to

George Attard, Ian Hamley, Rauzah Hashim, Corrie

Imrie, Claudio Zannoni and Habtamu Zewdie has been

especially satisfying and rewarding. My research inter-

ests have been framed both by careful planning and by

accident. These interests have been influenced by others

and I want to acknowledge their formative contribu-

tions here.

My three years as an undergraduate at the University

of Hull was especially pivotal. It was here that I first

met George Gray whose stimulating and transparent

lectures taught me much about organic chemistry. More

importantly I learnt about the existence of the liquid

crystal state of matter and its uniquely fascinating

behaviour; this was to determine my research interests

and continues to do so. I was privileged to study for

my doctorate at Cambridge in the Department of

Theoretical Chemistry headed by the inspirational

Christopher Longuet-Higgins. He explained how

important it was for theory to be guided by experiment

and vice versa, which is the very essence of Chemical

Physics. My primary research supervisor was Alan

Carrington from whom I learnt much about the

elegance of the quantum mechanics of magnetic

resonance spectroscopy and the stimulation to be

gained from ESR experiments. I hope that I also

inherited from him some of his enthusiasm for scientific

research; at the time it was certainly infectious. It was in

Cambridge that Alan and I performed the first ESR

experiment using a liquid crystal solvent. Our aim was

to employ the ordering imposed by the liquid crystal to

learn something about the structure of the free radical,

which was the tetracyanoethylene anion. It was not

until some years later that I was to invert the experiment

and use ESR to investigate the behaviour of liquid

crystals.

On graduation I decided that academia was not for

me and, recently wed, left with my wife, Jan, for Zürich

to take up a post in the Varian Research Laboratory as

the ESR Applications Scientist. This resulted in a

wonderful opportunity to work with the latest equip-

ment and to interact with some of the best scientists.

Amongst these was Warren Proctor who had been

involved in the discovery of the chemical shift and who

introduced me to solid state NMR spectroscopy. I then

used this to measure a fairly rudimentary form of the

proton NMR spectrum of PAA but this certainly

impressed Alfred Saupe when he visited the

Laboratory. It was also here that many of the ESR

experiments involving liquid crystals were performed

and my interests began to turn to the behaviour of the

liquid crystal hosts. After two years in Zürich I thought

again about academia and accepted an offer of a

lectureship at Southampton. During the early days I

was joined by Gian-Franco Pedulli and we worked with

considerable success on the electron spin relaxation of

systems containing more than one unpaired electron.

The effects we observed were fascinating and our ability

to explain them almost magical; this owes much to

Franco’s considerable insight. It was at Southampton

that I met Jim Emsley who eventually persuaded me of

the beauty of NMR spectroscopy and of its powerful

potential for exploring the behaviour of liquid crystals.

There then followed a wonderful period when we

worked together on a wide variety of fascinating

problems combining the power of molecular field

theory and deuterium NMR spectroscopy. Outside of

Southampton we worked with Neville Boden whose

inquisitive attitude to science resulted in so many

stimulating discussions. Bakir (Tim) Timimi joined us

first as a sabbatical visitor and then on what proved to

be an almost permanent basis. He is an extremely

talented experimentalist and over the years has made

our wild ideas reality. One of the most formative

collaborations was with Pier-Luigi Nordio; this started

in 1974 and continued until his untimely death in 1998.

He was an inspirational friend who taught me much

about theory, science, Italian culture, cuisine and life.

At Southampton Tim Sluckin had joined the then

Department of Mathematics and his interest in liquid

crystals meant that we worked together on some

challenging problems. What perhaps was more impor-

tant was the unique benefit of hearing his views on

almost any topic that was of concern to me. More

recently a seemingly chance encounter with Akihiko

Sugimura sensei in Southampton gave a quite new

direction to my research interests. He introduced me

to the importance of the macroscopic behaviour of

nematics and together we have made some fascinating

discoveries.

As I wrote this Introduction it soon became clear that

I should not be able to mention all of those with whom I

have interacted and who in one way or another helped

to shape my interests in and attitude towards liquid

crystals. I hope that they will forgive me for not

mentioning them explicitly. My list of publications

shows who they are and their contributions are certainly

no less valued.

The support and understanding of my family has also

played a major role in the way I have developed as a

scientist. As a child my parents certainly indulged me by

encouraging my interest and fascination in science,

especially chemistry and mathematics, from my early

days at School to the later years at University. Jan and
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our wonderful daughters, Nicola and Caroline, have

through their love ensured that I have been part of the

real world. Without them I should have been far less of

a person. Nicola and Caroline’s charming husbands,

Stephen and Mark, have certainly stimulated my

interests in quite new areas and it is a joy to have them

as members of a growing family. My fascination with

liquid crystal science continues and I still delight in

trying to unravel Nature’s secrets, but now this is much

tempered by the attention of our beautiful grand-

daughters, Clara and Minnie and by our recently

arrived grandson, Samuel.

Much of my research has been published but there

are, surprisingly, the results of certain projects that have

not reached the open literature. They cover areas that I

still consider to be exciting, important and certainly

meriting publication. For these reasons I have decided

to present some of them here. The selection I have made

provides representative examples of my contributions to

liquid crystal science; that is, in design and synthesis,

experimental characterization using techniques such as

ESR and NMR spectroscopy as well as neutron and X-

ray scattering, molecular field theory and the computer

simulation of model systems.

Five projects have been chosen and they are described

in a way which gives the flavour of the project rather

than providing the complete description expected for a

full paper. In addition, I give the names of those who

worked with me on the projects and in a very real sense

they should be thought of as co-authors of that

particular section of this paper. In the next section I

deal with the novel phase behaviour predicted for a

binary mixture of rods and spheres. The special interest

here is the experimental studies designed to test these

predictions and the failure of the theory to explain the

behaviour of tetraethyltin dissolved in 4-pentyl-49-

cyanobiphenyl. NMR studies of perdeuteriated tetra-

ethyltin show that this quasi-spherical molecule is in

fact orientationally ordered in the nematic host. If

allowance is made for this the observed phase behaviour

proves to be in good accord with the modified theory.

Another fascinating class of molecules also has a

tetrahedral core, these are the so-called tetrapodes in

which four mesogenic groups are attached through

flexible spacers to a central atom. This fascination stems

from their surprising ability to form liquid crystalline

phases. In § 3 a molecular field theory capable of

predicting the behaviour of these extremely flexible

molecules is described. It is then employed to predict

how the length of the alkyl chains and their mode

of attachment to the mesogenic groups influence the

nematic–isotropic transition temperature and the

orientational order parameter of the mesogenic groups

at this transition. These results suggest a range of

intriguing tests of the theory for the tetrapodes. This

was also found to be the case for liquid crystal dimers,

which can be thought of as half a tetrapode. As we

describe in § 4, the theory predicts that the nematic

behaviour of the dimers is strongly dependent on the

model used to describe the conformations of the spacer

linking the two mesogenic units. When the conforma-

tions are restricted to a discrete set the odd–even

behaviour is especially marked, but when the spacer is

able to adopt a continuous range of conformations the

odd–even behaviour is rapidly attenuated. This differ-

ence is especially significant for long spacers and to test

this prediction we have synthesized dimers with spacer

lengths of up to 24 atoms.

The predictions are based on the molecular field

approximation which is reliable at a semi-quantitative

level but is certainly not quantitative. More reliable

results are obtained from computer simulation studies

and in § 5 we describe a model developed for a liquid

crystal dimer with a very short spacer linking two Gay–

Berne molecules. The liquid crystal behaviour of this

generic model has been simulated using molecular

dynamics with inbuilt constraints. The model exhibits

a nematic and a smectic A phase with a curious

structure. The conformational distribution for the

dimer is also of special interest because of the manner

in which it changes with the phase. The shape of a Gay–

Berne molecule is essentially ellipsoidal; this differs

from that of real mesogenic molecules which approx-

imates more to that of a spherocylinder. The Corner S-

function potential is able to represent such a shape and

can also be modified to provide a model potential for

metallomesogens with large central groups. The nature

of the Corner model potential is described in § 6 where

the results of Monte Carlo simulations are presented.

The spherocylinder, with a length-to-breadth ratio of

3:1, is found to form isotropic, smectic A and possibly

crystal B phases. The introduction of a central sphere

into the molecule destroys the smectic A phase and

replaces it with a nematic. This behaviour is consistent

with the shape quadrupole of the spherocylindrical

molecule with its embedded sphere. Where it is

appropriate conclusions are drawn at the end of each

section.

2. Liquid crystal mixtures (with J. W. Emsley and

A. P. Singh)

Liquid crystal mixtures are widely used in most

applications of liquid crystals especially in the area of

displays where the composition of a multicomponent

mixture is adjusted, usually empirically, to achieve a

desired set of properties for a particular application. At

A chemical physicist’s view 1337

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



the same time investigations of liquid crystal mixtures,

both experimentally and theoretically, are of funda-

mental interest especially for the insight they provide

concerning the molecular interactions responsible for

liquid crystal behaviour [1]. The simplest of such

systems is a binary mixture composed of rod-like and

spherical molecules which serve to dilute the anisotropic

interactions between the molecular rods. Although the

system is particularly simple the phase diagram is

predicted to be rather intricate [2] as the example in

figure 1 shows. Thus at low concentrations of the

spherical component there is a nematic island sur-

rounded by a biphasic region in which nematic and

isotropic phases coexist. At higher concentrations the

isotropic phase undergoes a transition to the biphasic

system which then exists at all lower temperatures. The

intriguing form of the phase diagram has been

confirmed by computer simulation studies of model

systems [3]. More recently a strikingly similar phase

diagram has been reported for water droplets dispersed

in the nematogen, 4-pentyl-49-cyanobiphenyl (5CB) [4].

Since the high concentrations of the spherical

component could not be readily achieved experimen-

tally because the nematic phase was destroyed, attention

was focused on the initial Henry’s Law region of the

phase diagram [5]. Here, the slope of the phase

boundaries between the isotropic phase and biphasic

region (bI5dTI/dx) and the biphasic region and nematic

phase (bN5dTN/dx) were determined and compared

with those predicted by theory. The experiments proved

to be non-trivial because the quasi-spherical solutes,

such as carbon tetrachloride, tended to have high

vapour pressures and so tended to evaporate from the

mixture. One solution to this problem was to employ

solutes with higher molecular masses, for example,

tetraethyltin [5]. However, the problem here is that

the molecule is not even quasi-spherical in all of

the conformations in which it can exist and so the

anisotropic interactions will certainly influence the

gradients bI and bN. Indeed the influence of the solute

anisotropy proves to be rather large as the results of

some novel experiments by Rosenblatt have shown [6].

In order to avoid the problems associated with the

destruction of the nematic phase at moderately high

solute concentrations, he determined the divergence

temperature, T*, by measuring the field-induced

birefringence in the isotropic phase. This temperature

is expected to be intermediate between TN and TI as well

as to parallel both. In addition, theory [6, 7] shows that

for a spherical solute, T�M for the mixture is propor-

tional to that for the pure nematic T�A,

T�M~wA T�A: ð1Þ

Here, wA is the volume fraction of the nematic solvent in

the mixture; this is used rather than the mole fraction to

allow for any difference in the molar volume between

solute and solvent. Two mixtures were investigated,

both with 5CB as the nematic solvent; they differ,

however, in that the solute for one mixture was carbon

tetrachloride and for the other it was tetraethyltin. For

the mixture with carbon tetrachloride T�M is linear with

the volume fraction down to the relatively low value of

0.5 as predicted by equation (1). In contrast, the

divergence temperature for the mixture with tetraethyl-

tin exhibits a marked deviation from linearity in wA,

with T�M being higher than that predicted by equa-

tion (1). It was suggested by Rosenblatt [6] that the

flexible solute molecules might occupy channels parallel

to the molecular long axes of the nematogenic solvent

and so would disrupt the structure less than say the

quasi-spherical molecules of carbon tetrachloride.

An alternative interpretation is that the solute,

tetraethyltin, has a degree of anisotropy at least for

some of its conformers, and that the anisotropic

interactions between solute and solvent molecules will

result in a smaller disruption to the nematic structure.

To test this possibility we decided to investigate the

orientational order of tetraethyltin in a nematic phase

using deuterium NMR spectroscopy. To do this

requires a deuteriated sample of tetraethyltin but this

proved to be fairly easy to synthesize [8]. First,

deuteriated ethyl bromide-d5 was used to prepare the

Grignard ethylmagnesium bromide-d5. This was then

reacted with tin tetrachloride to give the desired

perdeuteriated tetraethyltin-d20. We used Merck Phase

V as the nematic solvent rather than the 5CB used in the

pretransitional temperature measurements because it

has a far larger nematic range; TCrN is 25uC and TNI is

75uC. The concentration of tetraethyltin-d20 in Phase V
Figure 1. The phase diagram for a binary mixture of rod-like
and spherical molecules predicted by molecular field theory.
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was 2 wt % corresponding to the Henry’s Law region of

the phase diagram. The deuterium NMR spectrum was

measured as a function of temperature using a Bruker

CXP200 spectrometer at a frequency of 30.7 MHz with

quadrature phase detection. A typical spectrum, taken

deep in the nematic phase, is shown in figure 2; it

consists of two quadrupolar doublets, and the lines of

the inner doublet are further split by dipolar interac-

tions between the deuterons. The observation of the

quadrupolar splittings tells us immediately that the

solute is orientationally ordered in the nematic solvent

and so the solute cannot be behaving as a spherical

solute. The dipolar couplings, taken together with the

relative intensities of the inner and outer lines, show

that the larger splitting is associated with the methylene

deuterons and the smaller splitting with the methyl

deuterons. The temperature dependence of the two

quadrupolar splittings is shown in figure 3. They exhibit

the expected decrease with increasing temperature, and

at the nematic–isotropic phase transition the splittings,

which are changing rapidly with temperature, then show

a very weak dependence. This is associated with the

onset of the biphasic region where the change of the

orientational order with temperature is offset by that in

the composition of the nematic phase [9].

The analysis of the two quadrupolar splittings and

their variation with temperature is a difficult task. This

difficulty results from the rotation of the methyl groups

about the carbon–tin bonds which means that the

molecule adopts a range of conformations that will be

orientationally ordered to different extents in the

nematic phase. The conformers generated by torsional

rotations of the methyl groups can be visualized, within

the rotational isomeric state model, in the following

way. The tin atom and the four carbon atoms bonded to

it constitute a rigid tetrahedral core. It is the four

methyl groups attached to these carbon atoms that

rotate, together with the methylene deuterons, about the

C–Sn bonds. The conformational energy will be a

minimum at the three positions of the methyl group

midway between two carbon–tin bonds. These con-

formations can be thought of as trans, gauche(+) and

gauche(2) with respect to one of the pentane-like

fragments and will differ in energy. The shapes of the

conformations will also be different and the nematic

environment will stabilize these to different degrees,

depending on the anisotropy of the conformer (see § 3).

The most anisotropic conformer is shown in figure 4, it

has S4 symmetry and can be viewed as being formed by

linking together two pentane-like chains, each in an all-

trans conformation, orthogonal to each other and at the

central atom which would be tin. The anisotropy of this

conformer can be calculated from the additive potential

model [10] where the anisotropic interaction tensor is

assumed to be the tensorial sum of those for certain

segments constituting the molecule [see equation (17)]. If

these segments are taken to be the C–Sn and C–C bonds

and if the CĈC and CĈSn bond angles are tetrahedral,

then the anisotropy in the interaction tensor for the S4

conformer vanishes [11]. This result is clearly in conflict

with the anisotropic shape of the conformer. One

solution to this paradox is to include the so-called

chord segments suggested by Marcelja [12] for mem-

branes and then used by Photinos et al. [13] for

Figure 2. The deuterium NMR spectrum of tetraethyltin-d20

dissolved in nematic Phase V at a shifted temperature, TNI2T,
of 42.4uC.

Figure 3. The temperature dependence of the quadrupolar
splittings for the methyl (u) and methylene (N) deuterons in
tetraethyltin-d20 dissolved in nematic Phase V.
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nematics, where a chord links the mid points of

neighbouring bonds. In the case of the S4 conformer

this results in an anisotropic tensor with cylindrical

symmetry about the symmetry axis of the conformer, as

expected.

The S4 conformation has a unique axis, z, and so at

the second rank level its orientational order is char-

acterized solely by Szz. The quadrupolar splittings are

proportional to this order parameter together with

certain geometrical factors; the angles defining these are

shown in figure 4. The splittings are given by [14]

D~nCD3
~ 3=4ð ÞqCDSzz 3 cos2 hCDz{1

� �
ð2Þ

and

D~nCD3
~ 3=8ð ÞqCDSzz 3 cos2 hCCz{1

� �
3 cos2 a{1
� �

; ð3Þ

where qCD is the quadrupolar coupling for an aliphatic

deuteron, normally taken to be 168 kHz. The depen-

dence of the two quadrupolar splittings on the angles

hCDz and hCCz leads to another problem in the limit that

the CĈC and CĈSn bond angles are tetrahedral, for

then hCDz and hCCz are equal to 54.74u and 180u–54.74u
which are the magic angle and its supplement. Since

P2(cos b) is zero for the magic angle, the quadrupolar

splittings would vanish identically. The fact that they do

not would be consistent with deviations of the bond

angles from the tetrahedral value. This is known to be

the case for alkane fragments in mesogenic molecules

such as 4-alkyl-49-cyanobiphenyl [15] and has also been

observed for alkyl-substituted tin compounds [16]. If we

assume that the angles hCDz and hCCz do deviate from

the magic angle and its supplement then we can proceed

with our analysis.

The S4 symmetry of the conformer means that the

ratio of the two quadrupolar splittings is determined

solely by the geometry of the conformer and so should

be independent of temperature. This proves to be the

case over a nematic range of almost 41uC, for

D~nCD2
=D~nCD3

is 1.47¡0.01, which provides some sup-

port for our assumption of a dominant conformer with

S4 symmetry. To go further with the analysis is a

problem because there are just two pieces of informa-

tion, D~nCD2
and D~nCD3

, but four unknowns in the model;

that is, the order parameter and the three angles. The

splittings in the limit of perfect orientational order

(Szz52K) can be estimated by extrapolating to

absolute zero by using the Haller plot [17]. In this limit

the only unknowns determining the two quadrupolar

splittings are the three angles, a, hCDz and hCCz. It is

reasonable to assume that a has the tetrahedral value

of 109.47u and this then leads to hCDz~57:2u and

hCCz~120:1u, provided the quadrupolar splittings are

opposite in sign; hCDz is close to half of the tetrahedral

value as might be expected and hCCz is in accord with

the value of CĈSn found from X-ray studies. Armed

with this geometric information the temperature depen-

dence of the order parameter Szz can be determined and

this is shown in figure 5. First, we note that the order

parameter is negative; this follows from the disc-like

shape of the S4 conformation which will tend to align

with the S4 axis orthogonal to the director. Secondly, at

the nematic–isotropic transition Szz is about 20.13 and

then decreases to 20.33. These are significantly large

values which demonstrate the relatively high orienta-

tional order of tetraethyltin in the nematic host. It is

clear now that the behaviour found for the concentra-

Figure 4. The geometrical and conformational structure of
tetraethyltin.
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tion dependence of the divergence temperature results

from the anisotropic nature of the solute molecule.

According to theory the divergence temperature for the

mixture is given by [7]

T�M~wA T�Az 1{wAð ÞT�B; ð4Þ

where T�B is the divergence temperature for the disc-like

component. The data for tetraethyltin in 5CB is in good

agreement with this theoretical prediction and so

provides further evidence for the anisotropic nature

of the guest molecule. By fitting the expression in

equation (4) to the experimental data we find a value for

the divergence temperature of tetraethyltin of 2136uC,

which seems reasonable and proves to be consistent

with the orientational order parameter determined

for tetraethyltin in Phase V. Finally we note that,

although this quantitative conclusion is satisfactory,

there is an alternative analysis of the data; this is

based on the additive potential model and includes

other conformations in which the pentane-like

fragments adopt gauche as well as trans conformations

[11].

3. Multipodes—a molecular field theory (with

J. W. Essex and T. H. Payne)

The growth in the complexity of mesogenic molecules

has been one of the exciting developments in the area of

thermotropic liquid crystals [18]. One group of such

novel compounds is formed by dendritic liquid crystals

in which a highly branched and flexible dendritic

structure is decorated with mesogenic groups, normally

attached to the perimeter of the dendrimer [19]. The

simplest member of this class of compound is the zeroth

generation dendrimer or multipode in which mesogenic

groups are linked through flexible spacers to a central

atom or relatively rigid molecular group [20]. Possibly

the first tetrapodes were described by Eidenschink et al.

[21] in which mesogenic groups are joined to a central

carbon atom through relatively short chains con-

taining an ester linkage. The compound with three-ring

mesogenic groups forms both smectic A and smectic B

phases. In later studies, compounds with a central

silicon atom linked to four mesogenic groups with

flexible spacers containing siloxane units and meth-

ylene groups were also found to form liquid crystals

[20]. When the mesogenic groups are linked terminally

to the chains there is a tendency to form smectic A

phases [22]. In contrast, multipodes with laterally

linked mesogenic groups tend to exhibit nematic phases

[23]. Of particular interest is the claim that certain

tetrapodes form the elusive biaxial nematic phase [24].

It is clearly of considerable importance to explore the

relationship between the nematic behaviour and the

molecular structure. We have, therefore, attempted to

investigate this relationship theoretically using a

molecular field approach and a model tetrapode in

which the mesogenic groups are linked, both ter-

minally and laterally, by alkyl chains to a central

carbon atom.

The theory must account for two essential features of

a multipode, one is the flexibility of the branched core

and the other is the anisotropic interactions of the

mesogenic groups. As a result of both features the

overall molecular anisotropy changes significantly with

the conformational state. This behaviour is analogous

to that for liquid crystal dimers where, as the

conformation of the chain linking the two mesogenic

groups changes, so too does their relative orientation

and the anisotropy of the dimer. Molecular field

theories of such effects have been developed and these

tend to rely on the rotational isomeric state model [25]

to describe the conformation of the spacer [10, 12, 13,

26]. In this the chain segments are taken to exist in

discrete conformations, trans, gauche(+) and gauche(2).

Although this simplifies the calculations it is un-

realistic since conformational fluctuations in the

minima of the torsional potentials do influence the

relative orientations of the mesogenic groups, especially

for long spacers. To allow for this effect in the theory

is relatively straightforward. However, the calculations

become considerably more involved and it is no

Figure 5. The dependence of the order parameter, Szz, for
tetraethyltin-d20 dissolved in nematic Phase V on the shifted
temperature, TNI2T, determined assuming a dominant S4

conformation.
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longer possible to include all conformational states

which, as we shall see, must be sampled using a biased

Monte Carlo algorithm [27]. The methodology devel-
oped for dimers should certainly be applicable to

multipodes and, in principle, to higher generation

dendrimers. Here we sketch the basic theory and then

use it to predict certain transitional behaviour of the

tetrapodes.

The starting point for the molecular field theory is the

energy of a molecule in a particular conformation and

orientation. Here the conformation is defined in terms

of the torsional angles, w, along the chains and these are
denoted collectively by {w}. The molecular orientation

is given by the spherical polar angles, b and a, defining

the orientation of the director in a frame fixed in a rigid

part of the molecule; these are denoted by v. The energy

is written as the sum of two parts

Utot wf gvð Þ~Uint wf gð ÞzUext wf gvð Þ; ð5Þ

where the first part depends only on the molecular

conformation and the second on both the orientation as

well as the conformation [28]. Formally, such a

separation of the total single molecule energy is always

possible, and so what is important is the physical

significance of the two terms. The energy, Uint({w}), is

taken to be the conformational energy that would

obtain in the isotropic phase. The other contribution,

Uext({w}v), is the anisotropic potential responsible for
the alignment of the molecule with respect to the

director; it necessarily vanishes in the isotropic phase.

The torsional potential for each chain segment is taken

to have the Ryckaert–Bellemans form

U wð Þ~V0z V1=2ð Þ 1zcos wzf1ð Þ½ �

z V2=2ð Þ 1{cos 2wzf2ð Þ½ �

z V3=2ð Þ 1zcos 3wzf3ð Þ½ �;

ð6Þ

where the fi are phase shifts [29]. The anisotropic

potential is taken from the molecular field theory for

rigid molecules in a uniaxial phase [30] and is given by

Uext wf gvð Þ~{
X

{ð ÞmX2m wf gð ÞC2{m vð Þ; ð7Þ

where C22m(v) is a modified spherical harmonic and

determines how the energy changes as the molecule

rotates in a fixed conformation. The strength of the

molecular field is contained in the tensor X2m; it

depends on the anisotropy of the molecule and so on

the conformation {w}. It is also determined by the

orientational order of the nematic phase and we shall

return to this dependence later.

The energy is then used to evaluate a number of
average quantities but rather than deal with each of

these explicitly we give the result for a general property

B({w}v) which is a function of both the conformation

and the orientation of the molecule. The average, <B>,

of this property is given by

SBT~

ð ð
B wf gvð ÞP wf gvð Þd wf gdv ð8Þ

where P({w}v) is the singlet conformational and

orientational distribution function. This distribution is

related to the total energy by the usual Boltzmann

factor, that is

P wf gvð Þ~exp {Utot wf gvð Þ=kBTð Þ=Qtot ð9Þ

where the conformational–orientational partition func-

tion is given by

Qtot~

ð ð
exp {Utot wf gvð Þ=kBTð Þd wf gdv: ð10Þ

It is of interest to obtain the conformational distribu-

tion from this result irrespective of the molecular

orientation. This is obtained from equation (9) by

integrating over the angles v which gives

P wf gð Þ~Qext wf gð Þexp {Uint wf gð Þ=kBTð Þ=Qtot: ð11Þ

Here Qext({w}) is the orientational partition function for

the conformer {w}. Qtot can be written in a similar form,

namely,

Qtot~

ð
Qext wf gð Þexp {Uint wf gð Þ=kBTð Þd wf g: ð12Þ

This shows that in the liquid crystal phase the

probability of a given conformer is changed by the

orientational partition function for that conformer.

This means that the anisotropic conformers will be

favoured in the liquid crystal phase, as expected, but in

a way that can be quantified.

The average, <B>, can be written in a similar form by

performing the integration over v; this gives

SBT~

Ð
SB wf gð ÞTvQext wf gð Þexp {Uint wf gð Þ=kBTð Þd wf gÐ

Qext wf gð Þexp {Uint wf gð Þ=kBTð Þd wf g ; ð13Þ

where <B({w})>v is the orientational average of

B({w}v) for a given conformation {w}. This orienta-

tional average is given by

SB wf gð ÞTv~

ð
B wf gvð Þexp {Uext wf gvð Þ=kBTð Þdv=Qext wf gð Þ: ð14Þ

The average <B> given in equation (13) can be viewed

as the conformational average of the property

<B({w})>v for each conformer. The challenge now is

to evaluate the integrals in equation (13), but this

cannot be achieved analytically and the continuous

nature of the torsional variables {w} means that not all

conformations can be included in the average. This

ð13Þ

ð14Þ
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requires the conformational variables to be sampled

randomly, and this is best done with an inbuilt bias to

give a conformational distribution appropriate for the

isotropic phase [27]. The average in the isotropic phase

would then be given by

SBT~ lim
N??

XN

i

SB wif gð ÞTv=N ð15Þ

where {wi} denotes a particular conformation for an

accepted Monte Carlo move. As we have seen, the

conformational distribution in the nematic phase differs

from that in the isotropic phase, see equation (11), and

to compensate for this difference equation (15) must be

modified [27]. The corrected form is

SBT~ lim
N??

PN

i

SB wif gð ÞTvQext wif gð Þ

PN

i

Qext wif gð Þ

2

6664

3

7775
ð16Þ

which is analogous to that encountered in umbrella

sampling [31]; it will be effective provided the distribu-

tions in the two phases do not differ significantly.

An essential part of the model is the explicit

relationship between the strength tensor, X2m({w}),

and the molecular conformation, {w}. There is a variety

of ways in which these can be related [10, 12, 13, 26]

and many rely on a segmental approximation; that is,

the tensor X2m({w}) is assumed to be a tensorial sum

of certain contributions from segments within the

molecule,

X2m wf gð Þ~
X

j

X
j
2m wf gð Þ: ð17Þ

Here the segmental contributions, X
j
2m wf gð Þ, are

expressed in a common molecular frame where they

still depend on the molecular conformation. This

dependence is made explicit simply by transforming

from the segmental frame, where the interaction tensor

is a constant, to the common molecular frame via

X
j
2m wf gð Þ~

X

n

X
j
2nD2

nm Vj wf gð Þ
� �

: ð18Þ

Here, D2
nm Vj wf gð Þ
� �

is a Wigner rotation matrix, where

Vj({w}) denotes the Euler angles relating the segmental

and molecular frames, these angles depend on the

molecular conformation. For calculations on the tetra-

podes the segments associated with the linking chains

are ignored and only contributions from the highly

anisotropic mesogenic groups are included. In addition,

it is assumed that the mesogenic groups are cylindrically

symmetric about the group long axis. This enables

equation (17) to be written as

X2m wf gð Þ~
X

j

X
j
20C2m vj wf gð Þ

� �
; ð19Þ

where vj denotes the spherical polar angles of the

symmetry axis for group j in the molecular frame.

Our numerical implementation of the molecular field

theory relies heavily on the use of the code BOSS

(Biological and Organic Simulation System) [32]. This

generates the conformations from a given molecular

structure, calculates the conformational energies and

samples the conformational states using a Monte Carlo

technique appropriate for the isotropic phase. These

accepted conformations are then used to determine a

range of average properties via equation (16); of special

interest here is the order parameter, <P2>, of the

mesogenic group together with those quantities required

to determine the Helmholtz free energy difference

AN{AI~{SUextQextT=2SQextT{kBT ln SQextT=4pÞ:ð20Þð

The nematic–isotropic transition is located by determin-

ing when this difference vanishes. The temperature

enters the simulations via the scaled variable X*(;X20/

kBT) and it is the value of this variable that is

determined at the transition. However, as we have seen,

the strength tensor, X2m, also depends on the orienta-

tional order of the phase. In consequence X �NI will not

depend on temperature alone but will also vary with the

order parameter for the mesogenic groups, <P2>NI, at

the transition. This relationship is provided by mole-

cular field theory as

X �NI~ e=kBTNIð ÞSP2TNI: ð21Þ

Although the proportionality constant, e, is not known,

it is determined, in principle, by the anisotropy of a

mesogenic group.

The simulations were performed for the tetrapodes

shown in figure 6, with the mesogenic groups attached

both terminally and laterally to the flexible alkyl chains

through ether linkages. One of our prime interests is in

the variation of the nematic–isotropic transition tem-

perature with the number of groups, n, in the chain

linking a mesogenic group to the central carbon atom

and the nature of the attachment. This dependence of

the scaled transition temperature, T�NI :kBTNI=eð Þ, is

shown in figure 7 for both groups of tetrapodes; that is,

with terminal and lateral modes of attachment. One

striking feature of the results is that the tetrapodes with

laterally attached mesogenic groups have a higher

nematic–isotropic transition than those with terminal

attachments. This difference is especially large for short

chains (n54) and then decreases with the length of the

alkyl chain until it vanishes when n is 12. Individually,
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T�NI for the lateral tetrapodes decreases with chain

length while that for the terminal tetrapodes increases.

These results can be understood in a relatively

simplistic manner in terms of the behaviour of certain

limiting structures. Thus when the flexible core of the

tetrapode places no constraints on the relative orienta-

tions of the mesogenic groups the system will behave as

four independent mesogenic groups. In this limit the

nematic–isotropic transition will be that predicted by

the Maier–Saupe theory for which T�NI is 0.2203 [33].

This value is very close to that found for both classes of

tetrapodes when the chain length n512. At the other

extreme it might be envisaged that the core is rigid

and that the mesogenic groups have fixed relative

orientations. If, for example, the four groups had a

tetrahedral arrangement then at second rank level the

anisotropy has vanished and so T�NI would also vanish.

This suggests that to some extent the terminal tetra-

podes with short alkyl chains tend to adopt conforma-

tions for which the anisotropies of the mesogenic groups

tend to cancel. This would be consistent with the

ground-state conformation of the flexible core.

Conversely, if the rigid conformation allows the four

mesogenic groups to be aligned parallel to each other

then the molecular anisotropy will be four times that for

a single mesogenic group. The nematic–isotropic

transition temperature is then predicted by molecular

field theory to be four times that for a single mesogen

[34]. This would then suggest that in the lateral

tetrapodes with short chains the mesogenic groups tend

to be arranged parallel to each other.

The predicted values of T�NI for the two classes of

tetrapodes do exhibit a subtle odd–even behaviour, with

odd members of the homologous series falling on one

smooth curve and even members on another. This effect

is well-known for liquid crystal dimers where the even

members of a series tend to have higher transition

temperatures than neighbouring odd members, as we

shall see in § 4. The lateral multipodes exhibit the same

behaviour although the difference is less pronounced

than for the dimers. In contrast, the terminal tetrapodes

exhibit the reverse behaviour, with the even members

having smaller nematic–isotropic transition tempera-

tures than their odd neighbours. Since the factors

controlling T�NI for flexible molecules are complicated,

and because the odd–even behaviour predicted for the

tetrapodes is subtle, we shall not attempt to provide an

intuitive explanation here.

The other quantity of interest is the magnitude of the

orientational order of the nematic phase formed by the

tetrapodes. A measure of this is provided by the value of

the second rank order parameter of a mesogenic group,

<P2>NI, at the transition. The dependence of this order

Figure 6. The molecular structures of the two classes of
tetrapodes studied in the molecular field calculations: (a) with
cyanobiphenyl groups attached terminally and (b) with
dicyanoterphenyl groups attached laterally.

Figure 7. The variation with spacer length, n, of the scaled
nematic–isotropic transition temperature, T�NI :kBTNI=eð Þ, for
tetrapodes having terminally (e) and laterally (+) attached
mesogenic groups.
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parameter on the alkyl chain length for the terminal and

lateral tetrapodes is shown in figure 8. It is immediately

apparent that the results for the terminal tetrapodes

show initially a strong odd–even effect with the values

for the even chains being higher than for the odd.

However, this alternation is rapidly attenuated and has

virtually vanished when n is greater than 9. In contrast

the order parameters for the lateral tetrapodes do not

exhibit an odd–even effect although <P2>NI does

decrease with increasing chain length and tends to the

same limiting value as the terminal tetrapodes of

approximately 0.44. This value is essentially the same

as that predicted by the Maier–Saupe theory for rigid,

cylindrically symmetric molecules which gives <P2>NI

as 0.429 [33]. This essential equality of the order

parameters is to be expected because for long alkyl

chains the mesogenic groups of the tetrapodes are not

directly correlated and so behave like a collection of

monomers. The observation for the tetrapodes with

short chains that the order parameter is higher than that

predicted for single mesogens is of considerable interest.

Similar behaviour is found for liquid crystal dimers with

even spacers [35] and has been attributed to increases in

the probabilities of anisotropic conformers on passing

from the isotropic to the nematic phase. It is possible

that the same mechanism applies for the tetrapodes; the

simulations suggest that for lateral attachment the

conformational change would need to be monotonic

in the spacer length, whereas for terminal attachment

the change would be greater for even than for odd

chains.

4. Liquid crystal dimers with long spacers (with

F. J. Farrand)

Liquid crystal dimers, in which two mesogenic groups

are linked by a flexible spacer, constitute a novel class of

materials. They were discovered by Vorländer [37] who

found that the transitional properties depended, in a

major way, on both the length of the spacer and the

parity of the number of atoms in it. Despite the novelty

of this behaviour the discovery appears to have been

forgotten, and it was not until many years later that the

intriguing transitional properties were rediscovered [38].

Now, the interest in liquid crystal dimers was not lost

and there has been considerable activity, both in the

phases that they form and how these depend on the

nature of the mesogenic groups as well as the spacer.

One of the longest series of homologues, made at the

start of such investigations, was the a,v-bis(4-cyanobi-

phenyl-49-yloxy)alkanes [39]. They were found to form

only nematic phases, at least for the early members of

the series up to the dodecane spacer. The variation of

the nematic–isotropic transition temperature and the

transitional entropy, DS/R, with the number of atoms,

n, in the spacer is shown in figure 9. Here n is two more

than the number of carbon atoms because of the two

oxygen atoms constituting the ether links. The transi-

tion temperatures clearly exhibit a strong alternation,

with the even homologues having a higher value than

their odd neighbours, see figure 9 (a). The alternation is

particularly dramatic at the start of the series where TNI

for the dimer with the n54 spacer is over 140uC higher

than that for n53. This major alternation is, however,

rapidly attenuated as the chain length increases, although

the TNI values still differ by about 10uC for

the homologues with n513 and 14. The transitional

entropy, DS/R, shown in figure 9 (b) also exhibits a

strong alternation but, unlike the transition temperature,

this does not appear to be attenuated as the spacer length

increases. The transitional entropy for dimers with odd

spacers is comparable with that for monomers, while DS/

R for dimers with even spacers is about three times larger.

This considerable difference in the transitional entropy

suggests that the orientational order for even dimers is

significantly greater than that for odd dimers and NMR

studies have shown this to be the case [35].

It is tempting to suppose that this difference in

behaviour for even and odd liquid crystal dimers

originates from their difference in shape. Thus for the

spacer in its all-trans conformation the even dimers have

a zig-zag shape in which the mesogenic groups are

parallel. In contrast the odd dimers have a bent or

banana shape in which the mesogenic groups are

inclined to each other. However, this cannot be the

entire explanation for it suggests that the even dimers

Figure 8. The dependence of the orientational order para-
meter for a mesogenic group, <P2>NI, at the transition on the
chain length for the terminal (e) and lateral (+) tetrapodes.
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with their parallel mesogenic groups should behave like

monomers whereas the odd dimers with their bent

structures should be more weakly ordered. In fact as far

as the transitional entropy is concerned the odd dimers

behave like the monomers and the even dimers have a

considerably higher transitional entropy. What we have

ignored so far is the flexibility of the spacer linking the

mesogenic groups which allows the molecules to exist in

many conformational states with differing anisotropies.

In addition, the conformational distribution will change

when the phase undergoes a transition from isotropic to

nematic with the more anisotropic conformers being

favoured in the nematic phase, see equation (11). The

ability of the change of phase to modify the conforma-

tional distribution will, of course, depend on the

conformational energy of the anisotropic conformers.

This proves to be higher for odd dimers than for even,

so that the conformational changes will be larger for the

even than the odd dimers. As a consequence the increase

in the fraction of the more anisotropic conformers will

enhance the order of the nematic phase to a greater

extent for the even dimers in comparison with the odd.

Theories for flexible mesogenic molecules based on

the molecular field approximation have been developed,

and the essential features of these are described in § 3. A

key aspect of such theories is the approach used to

describe the conformational state of the spacer. In that

used for the tetrapodes the conformation is defined in

terms of the torsional angles, w, along the spacers, which

constitute a set of continuous variables; the conforma-

tional energy is then calculated from the Ryckaert–

Bellemans potential, see equation (6). At the other

extreme, in the rotational isomeric state model, the

torsional angles are only allowed to take three discrete

values, corresponding to the trans, gauche(+) and

gauche(2) conformations of a link in the chain. In its

simplest form the conformational energy is given by

Uint wf gð Þ~ngEtg; ð22Þ

where ng is the number of gauche links in the spacer and

Etg is the energy difference between a trans and a gauche

link [25]. The transitional properties for liquid crystal

dimers using both discrete and continuous models for

the conformational states have been calculated as

a function of the spacer length [27]. The results for

the scaled nematic–isotropic transition temperature,

TNI

.
T

6ð Þ
NI , and the transitional entropy, DS/R, are

shown in figures 10 (a) and 10 (b), respectively. The

striking feature of the two plots is that the discrete

model predicts a far greater alternation in both TNI

.
T

6ð Þ
NI

and DS/R than the continuous model. Indeed the

alternation in DS/R is predicted to increase with the

spacer length by the discrete model, whereas the

continuous model predicts that the odd–even effect

in the transitional entropy is attenuated; this difference

in behaviour is most pronounced when the spacer is

long. The alternation in the transition temperature is

predicted to be rapidly attenuated by the continuous

model and to decrease slightly with increasing spacer

length. In contrast the discrete model predicts a strong

alternation in TNI even for the longest spacer. This

difference in behaviour predicted by the two conforma-

tional models results from the maintenance of the

orientational correlations between the mesogenic

groups in the discrete model, whereas for the contin-

uous model the torsional fluctuations about the energy

minima result in a more effective loss of orientational

correlations. In order to test the differing predictions of

Figure 9. The variation of (a) the nematic–isotropic transi-
tion temperature, TNI, and (b) the transitional entropy, DS/R,
with the number of atoms, n, in the spacer for the early
members of the a,v-bis(4-cyanobiphenyl-49-yloxy)alkanes
(CBO(n-2)OCB).
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the two models, and to see which provides the most

realistic description of the chain conformations, we

have synthesized liquid crystal dimers with longer

spacers.

The homologues of the a,v-bis(4-cyanobiphenyl-49-

yloxy)alkanes that have been reported were prepared

from 4-hydroxy-49-cyanobiphenyl and the a,v-dibro-

moalkane via a Williamson synthesis [39]. The a,v-

dibromoalkanes are commercially available for chain

lengths of up to 12 carbon atoms. The dibromides are

conveniently prepared from the corresponding alkane

diols and although these were not commercially

available two diacids from which they could be

synthesized were. These diacids were brassylic acid

and tetradecanedioic acid which, on reduction, gave

1,13-tridecanediol and 1,14-tetradecanediol, respec-

tively. To proceed to longer spacers it was necessary

to synthesize either the a,v-diols directly or the a,v-

diacids; this proved to be a non-trivial task and a range

of strategies had to be employed in order to extend the

series to give spacers containing from 14 to 24 atoms.

The routes to the a,v-diacids and the a,v-diols involved

the symmetric addition of groups to a difunctional

alkene or alkane. We found that no one route would

produce all of the chain lengths that were required and

eventually three distinct synthetic routes had to be

employed [40–42].

The first of these is shown in figure 11. It involves the

nucleophilic substitution of 1,4-dibromobut-2-ene by

1,3-cyclohexanedione to form 1,4-bis(1,3-cyclohexane-

dione)but-2-ene. Then, under Wolff–Kishner reaction

conditions, one of the carbonyls on each ring is reduced

and the other is hydrolysed to the acid. This gives the

a,v-diacid and the double bond at the centre of the

molecule is reduced by hydrogenation. Unfortunately

this route could only be used for 1,16-hexadecanedioic

acid because the 1,4-dibromobut-2-ene is necessary to

create the stabilizing allylic group.

The second route was more effective and allowed us

to synthesize three diacids, namely those with 19, 20 and

21 carbon atoms in the chain. The synthetic route is

shown for 1,21-heneicosanedioic acid in figure 12 and is

based on 1-morpholino-1-cyclohexene. This is reacted

with azelaoyl chloride and leads to a cyclic ketone which

is then saponified to give the sodium salt of the diacid.

The two carbonyl groups remaining in the chain must

then be reduced, again using Wolff–Kishner conditions,

to give the desired a,v-diacid. To obtain the other chain

lengths the reaction was performed with 1-morpholino-

1-cyclopentene which gave 1,19-nonadecanedioic acid.

The other member of the series, 1,20-eicosanedioic acid,

was prepared using 1-morpholino-1-cyclopentene and

sebacoyl chloride. In practice this route proved to be

problematic partly because during the saponification of

the cyclic ketone the chain was also cleaved at the

carbonyl group, at least for certain chain lengths.

The final route [42] that we have employed to

synthesize the a,v-diols is shown in figure 13; it does

not involve the reduction of an a,v-diacid but proceeds

directly to the a,v-diol via the hydrolysis of the a,v-

diacetate. This diester is prepared by first making the

acetate of 1-chloro-4-butyl alcohol. In the next step the

chlorine is replaced by iodine and the resulting iodo-

ester is reacted with a di-Grignard reagent made from

1,7-dibromoheptane. This gives the 1,15-pentadecanyl-

diacetate which on hydrolysis yields the desired

1,15-pentadecanediol.

Figure 10. The predicted dependence of (a) the scaled
nematic–isotropic transition temperature, TNI

.
T

6ð Þ
NI , where

the superscript (6) denotes the value for the six spacer dimer,
and (b) the transitional entropy, DS/R, on the spacer length, n.
The results obtained using the rotational isomeric state model
are denoted by –N– and those for the continuous model are
shown as –&–.
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The a,v-bis(4-cyanobiphenyl-49-yloxy)alkanes were

then assembled from different precursors according to

the scheme shown in figure 14. The a,v-alkanyldioic

acids were first reduced to the corresponding a,v-

dihydroxyalkane. Initially these were converted to the

a,v-dibromoalkanes and reacted via a Williamson

Figure 11. The reaction scheme for the synthesis of 1,16-hexadecanedioic acid.

Figure 12. The synthetic strategy used to prepare 1,21-heneicosanedioic acid.
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synthesis to give the a,v-bis(4-cyanobiphenyl-49-yloxy)

alkanes [39]. However, it was found that this procedure,

which involves two steps, was less effective than

coupling 4-hydroxy-49-cyanobiphenyl directly to the

a,v-diol using the Mitsunobu method [43].

The transitional properties of the twelve new liquid

crystal dimers with their long spacers were characterized

using polarizing optical microscopy and differential
scanning calorimetry. The dimers were found to exhibit

only nematic phases, as identified by their schlieren

textures with both two- and four-point singularities.

This is identical to the behaviour of the a,v-bis(4-

cyanobiphenyl-49-yloxy)alkanes with the shorter

spacers (n53 to 14) [39]. Not all of the new dimers

had enantiotropic nematic phases: for even spacers the

dimers with 18 or more atoms gave a monotropic
nematic as did the odd dimer with a spacer of 23 atoms.

However, it was possible with all of these liquid crystal

dimers to supercool the isotropic phase below the

freezing point and so determine both TNI and DS/R,

which was our primary aim. Combined with the earlier

measurements [39] we now have a continuous homolo-

gous series of the a,v-bis(4-cyanobiphenyl-49-yloxy)

alkanes containing from 3 to 24 atoms. The transitional
properties of these nematogens are listed in table 1; they

clearly constitute a valuable resource, not only to test
Figure 13. The synthetic route for the preparation of 1,15-
pentadecanediol.

Figure 14. The preparation of the a,v-bis(4-cyanobiphenyl-
49-yloxy)alkanes starting from the a,v-alkane diacids or the
a,v-alkane diols.

Table 1. The melting points, TCrN or TCrI, nematic–isotropic
transition temperatures, TNI, and nematic–isotropic transi-
tional entropies, DS/R, of the a,v-bis(4-cyanobiphenyl-49-
yloxy)alkanes as a function of the spacer length n.

n TCrN/uC; TCrI/uC TNI/uC DS/R

3 144 (124) —
4 205 265 1.77
5 185 (170) 0.54
6 209 250 1.95
7 137 186 0.66
8 187 221 1.98
9 137 181 0.78
10 175 201 2.01
11 133 172 0.94
12 164 184 2.14
13 124 164 1.01
14 149 171 2.08
15 116 152 1.06
16 152 157 2.12
17 109 151 1.13
18 152 (150) 2.19
19 118 145 1.23
20 147 (144) 2.18
21 125 137 1.34
22 135 (131) 2.21
23 130 (126) 1.59
24 136 (128) 2.26

The results for spacer lengths from 3 to 14 are taken from [39].
However, the transitional entropies for n513 and 14 seemed
inconsistent with those of other homologues, the new
transitional entropies are listed here. (…) denotes a mono-
tropic nematic–isotropic transition and for these compounds it
is the melting point, TCrI, that is given.
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theoretical predictions but also for comparison with the

behaviour of analogous compounds, as for example the

tetrapodes (see § 3).

The nematic–isotropic transition temperatures are

plotted as a function of the spacer length in figure 15

together with the melting points for these cyanobiphe-

nyl dimers. The TNI clearly alternate fairly dramatically

for short spacers, but just as clearly the alternation is

attenuated. Indeed for spacer lengths of 16 or more the

alternation has essentially vanished and TNI simply

decreases by a small amount with increasing n.

Comparison of this behaviour with that predicted by

the molecular field theories shown in figure 10 (a)

is quite striking. It immediately reveals that the

predictions based on the discrete model for the

conformations of the spacer are in poor agreement with

experiment. The alternation in TNI predicted for long

spacers is clearly not matched by the experimental

results. In marked contrast the variation of TNI given by

the continuous model for the conformational states is in

remarkable agreement with experiment. The rapid

attenuation in the alternation in TNI followed by the

continuing slight decrease in the transition temperature

with increasing spacer length is exactly what is observed

for the homologous series of a,v-bis(4-cyanobiphenyl-

49-yloxy)alkanes. We should note that the melting

points of these dimers shown in figure 15 (a) also

exhibit an alternation, with the even members having

higher melting points than their odd neighbours. The

alternation is not attenuated to any significant extent,

unlike the behaviour found for TNI. This alternation

presumably indicates the ease of packing even dimers

with their elongated shape into the crystal lattice in

comparison with the bent form for the odd dimers.

The variation of the entropy change at the nematic–

isotropic transition with the spacer length is shown in

figure 15 (b). The results for the members of this

extensive homologous series of cyanobiphenyl dimers

exhibit a marked alternation even for the longest spacer,

in contrast to the behaviour of the transition tempera-

ture, TNI. In addition to the alternation which decreases

slightly with increasing n there is also a gradual increase

in DS/R with the length of the spacer. As a consequence

there is a small reduction in the relative alternation in

the transitional entropy as n grows. Comparison of

these results with the predictions of DS/R made by the

molecular field theories immediately reveals that the

discrete model is in poor agreement with experiment, see

figure 10 (b). The alternation in DS/R for long spacers is

clearly too large; in addition the transitional entropy for

the even dimers is predicted to increase significantly

with spacer length. In contrast the experimental results

in figure 15 (b) show only a slight increase. As we might

have expected the predictions of the continuous model

for the conformations are in much better agreement

with experiment. The alternation in DS/R is predicted to

decrease and the values for the even dimers show only a

slight growth with the spacer length; both predictions

are in good agreement with experiment. It would seem

that in understanding the transitional properties of

liquid crystal dimers, and presumably of other liquid

crystals composed of highly flexible molecules, the

continuous model for the conformational states pro-

vides a far better basis than the discrete rotational

isomeric state model.

Figure 15. The variation of (a) the melting point (X) and
nematic–isotropic transition temperature (&), and (b) the
entropy change at the nematic–isotropic transition with the
spacer length, n, for the a,v-bis(4-cyanobiphenyl-49-yloxy)
alkanes.
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5. Liquid crystal dimers: a constraint molecular

dynamics simulation (with P. S. J. Simmonds and

D. J. Tildesley)

In the previous section we saw how molecular field

theory could help our understanding of the nematic

behaviour of liquid crystal dimers with long spacers.

For dimers with shorter spacers the reduced molecular

complexity means that computer simulation techniques

can be used to explore their phase behaviour and the

properties of these phases with greater reliability [44].

Here we describe a model for one of the simplest liquid

crystal dimers in which two mesogenic groups are linked

together with just two methylene groups. The model for

the interactions between the mesogenic groups is taken

to be the Gay–Berne potential which has been shown to

work well for liquid crystal monomers [45]. This generic

potential assumes that the molecules are cylindrically

symmetric so that their orientations are described by the

unit vector, û, for the symmetry axis. The pair potential

is a single site model in which the energy depends on r,

the vector separating the two sites [46]. The dependence

resembles a Lennard–Jones 12-6 potential and is written

as

U ûiûjr
� �

~4e ûiûj r̂
� �

R{12{R{6
� �

; ð23Þ

where

R~ r{s ûiûj r̂
� �

zs0

� ��
s0: ð24Þ

Here, the orientation dependence of the contact

distance is given by

s ûi ûj r̂
� �

~s0 1{x
ûi
: r̂

� �2

z ûj
: r̂

� �2

{2x ûi
: r̂

� �
ûj
: r̂

� �
ûi
:ûj

� �

1{x2 ûi
:ûj

� �2

2

64

3

75

8
><

>:

9
>=

>;

{1=2

; ð25Þ

where s0 is the contact distance for a pair of molecules

in the cross configuration. The molecular anisotropy is

determined by the parameter x which is defined by

x~ k2{1
� ��

k2z1
� �

; ð26Þ

where k is the length-to-breadth ratio, se/ss. The

angular dependence of the well depth is somewhat more

involved; it is

e ûiûj r̂
� �

~e0en
1 ûiûj

� �
em

2 ûiûj r̂
� �

; ð27Þ

where e0 is the well depth for the molecules, again in a

cross configuration. The first angle dependent function

is given by

e1 ûiûj

� �
~ 1{x2 ûi

:ûj

� �2
h i{1=2

ð28Þ

and so is related to the shape anisotropy of the molecule

through x. The second function is

e2 ûiûj r̂
� �

~1{x0
ûi
: r̂

� �2
z ûj

: r̂
� �2

{2x0 ûi
: r̂

� �
ûj
: r̂

� �
ûi
:ûj

� �

1{x0 ûi
:ûj

� �2

" #

ð29Þ

and is clearly analogous to the expression for the

contact distance in equation (25). Similarly the para-

meter x9 is analogous to x and is defined by

x0~ k01=m{1
� ��

k01=mz1
� �

: ð30Þ

The quantity k9 provides a measure of the anisotropy in

the well depth and is defined by es/ee where es is the well

depth for the side-by-side configuration and ee is that

for the end-to-end configuration. The exponents n and m
are adjustable parameters with little direct physical

significance. The parameters s0 and e0 are used to scale

distance and energy, respectively, in the simulations.

This still leaves four adjustable parameters k, k9, n and

m; these are used to denote a particular parameterization

of the Gay–Berne potential by GB(k, k9, n, m) [47]. The

values of these parameters were initially determined by

mapping the potential onto that for a line of four

Lennard–Jones atoms [46]; this gave the Gay–Berne

mesogen GB(3.0,5.0,2,1) which is known to form

isotropic, nematic and crystal phases [48].

The structure of the dimer is sketched in figure 16 (a);

two Gay–Berne mesogenic groups are linked together at

a distance of s0 from the molecular centre using a bond

2s0/3 in length. The link makes an equilibrium angle h0

with the symmetry axes of the two mesogenic groups.

The ground state of the dimer is taken to be the trans

conformation in which the mesogenic groups and the

link between them are coplanar. The torsional angle, w,

for this conformation is defined to be zero and the

torsional energy for larger values is given by the

Ryckaert–Bellemans potential

Utors wð Þ~
X5

n~0

cn cosnw ð31Þ

which works well for alkanes [49]; this form is

equivalent to that given in equation (6). For such

systems the potential contains three minima, one

corresponding to the trans conformation; the other

two equivalent minima are the gauche(+) and gauche(2)

conformations which have a higher energy. In addition

we also allow for bond bending by using the harmonic

potential suggested by van der Ploeg and Berendsen

[50], namely

Ubend hð Þ~ kbend=2ð Þ h{h0ð Þ2 ð32Þ

where kbend is the force constant for this deformation.

The simulation methodology is taken from the

approach used in molecular dynamics simulations of

; ð25Þ
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polyatomic molecules [51]. Here the equations of
motion for the atomic coordinates are solved using

the forces on the atoms resulting from the scalar

potentials. However, in such simulations it is essential

that the bond lengths within the molecule are conserved.

This is achieved by the addition of extra terms to the

equations of motion, so that in the next time step any

changes made to the bond length in the current time

step are corrected. In order to be able to implement this

methodology for the flexible dimer model that we have

designed it is necessary to replace the force and torque

which act on the centre of mass and the symmetry axis

of a Gay–Berne molecule by forces acting on two

centres displaced from the molecular centre of mass. An

analogous approach was employed in the first mole-

cular dynamics simulation of a Gay–Berne mesogen [48]

and described in [52]. The forces are related to the force,

F, on the centre of mass and a contribution, Ft,

originating from the torque. The sites each have mass

M/2 and the forces on them are

F1~F=2zFt ð33Þ

and

F2~F=2{Ft: ð34Þ

The contribution from the torque, T, is given by

2pê|Ft~T; ð35Þ

where p is the distance of each site from the centre of

mass and ê is a unit vector. The y-component of the

forces on the two centres coming from the torque is

given by

Fty~ 1=pð Þ Tzêx{Txêz

� �
: ð36Þ

This can then be used to calculate the x-component

Ftx~ 1=pð Þ pêxFty

�
êy{Tzêy

� �
ð37Þ

which, in turn, is used to obtain

Ftz~ 1=pð Þ pêzFtx

�
êx{Ty

�
êx

� �
: ð38Þ

From these results the forces on the two centres can be

determined from equations (33) and (34). The forces are

then employed in Verlet-like algorithms to evaluate the

positions of the four sites in the dimer at the next time,

t+dt. The constraints necessary to maintain constant

distances between the sites in a given Gay–Berne

mesogenic group, and between the sites that link the

two groups together, are applied using the SHAKE

algorithm [53]. From the positions of the four sites the

new positions and orientations of the Gay–Berne

mesogenic groups are recalculated for the next time

step and from these the forces on the four sites in the

dimers are obtained; see equations (33), (34) and (36) to

(38).

We now describe the parameterization of our model

dimer. For the two Gay–Berne mesogenic groups we use

the original form, namely GB(3.0,5.0,2,1). To show the

resulting potential for the dimer we fix it in its trans

form with h0 equal to the tetrahedral angle, 109.47u, and

calculate the energy as a single mesogenic molecule,

GB(3.0,5.0,2,1), is moved around this with its symmetry

Figure 16. (a) The trans structure of the flexible liquid crystal
dimer formed by linking two Gay–Berne mesogenic groups,
showing the location of the four interaction sites and the
connection between two of them. (b) The potential energy
contours for the dimer in its trans conformation calculated as
another Gay–Berne mesogen, GB(3.0,5.0,2,1), is moved
around the dimer with its symmetry axis parallel to those of
the mesogenic groups in the dimer. The contours are in ten
evenly spaced steps between 2e0 and zero, corresponding to
the contact distance.
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axis parallel to those of the mesogenic groups in the

dimer. The energy contours are shown in figure 16 (b)

and clearly illustrate the Z-shape of the dimer. In

addition, deep attractive wells are apparent when the

Gay–Berne molecule is adjacent to the mesogenic

groups in the dimer, and also near the cusps where

the contact contour of one mesogenic group overlaps

with that of the other. As we have seen, the Gay–Berne

potential contains a parameter e0 that is used to scale

the energy in the simulation. In contrast, the constants

in the Ryckaert–Bellemans potential, as well as the force

constant for the bending potential, have absolute values

determined from experiment. To convert these to

relative values scaled with e0 we need an estimate of

e0; we have obtained this in the following way. First, we

note that in simulations of Gay–Berne mesogens which

exhibit a nematic–isotropic transition, this invariably

occurs when T* is about 1 [45]. Since the nematic–

isotropic transition temperature of typical liquid crystal

dimers is of the order of 440 K (see table 1) we set e0/kB

to be 440 K. This has been used to give the scaled values

of the bending force constant and expansion coefficients

listed in table 2. The number of dimer molecules used in

the simulation was 108, equivalent to 216 Gay–Berne

molecules. This is a relatively small system by current

standards but we believe that the behaviour we have

observed would not change to any significant extent if a

larger system were to be studied. The scaled number

density, r � :Ns3
0

�
V

� �
, used in the microcanonical

molecular dynamics simulations was 0.135, which is

equal to a number density of 0.27 for the Gay–Berne

mesogen typically employed in the study of monomers.

In fact, we have also investigated a system of

monomers, GB(3.0,5.0,2,1), using this density to act as

a comparison with the behaviour of the dimer. The

equilibration run comprised 20k time steps as did the

production run. The phases formed by this system were

identified from the radial distribution function, g(r*),

and the second rank orientational correlation coeffi-

cient, G2(r*). This coefficient is defined by

G2 r�ð Þ~SP2 cos bij

� �
Tr� ; ð39Þ

where bij is the angle between molecules i and j

separated by a scaled distance, r*. In the limit of large

separations G2(r*) tends to the square of the long range

order parameter, <P2> [54]. The simulations were

started at a scaled temperature T*(;kBT/e0) of unity,

at which point the system was observed to be isotropic,

as revealed by g(r*) and G2(r*). The isotropic phase was

found to be stable until T* of 0.4 when the two

functions revealed a phase with high orientational and
translational order. It has a layered structure with

hexagonal packing and, since the molecules were not

observed to diffuse within the phase, it is identified as a

crystal. The Gay–Berne monomer is then found to form

just isotropic and crystal phases at this scaled density, in

keeping with other simulations [55].

It is to be expected that linking the two Gay–Berne

mesogenic groups will lower the symmetry of the

molecule. This should reduce the stability of the crystal

phase and so enhance that of the liquid crystal phases.

We have investigated three scaled temperatures and

report the results for these here. The target temperatures

were set as 2.0, 1.10 and 0.90 but during the production
run they drifted slightly away from these; the average

temperatures for the runs were 2.04¡0.05, 1.14¡0.03,

0.90¡0.02. During the simulations it was found that

much longer runs than for the monomer were needed,

especially to ensure good conformational equilibration

and averaging. The equilibration runs consisted of 40k

time steps at T* of 2.0 and 80k at the two lower

temperatures; the production runs all had 120k time
steps. The centre of mass of a dimer varies with its

conformation and this was calculated from the positions

of the four mass sites at each time step. The definition of

the orientation requires a particular axis set in the dimer

and, because of the changes in the conformation, there

is no unique definition for this. We have chosen to

identify this as the inertial axis corresponding to the

smallest principal component of the inertial tensor;
again this was calculated for each dimer at every time

step in the production run. Armed with this information

we have evaluated the radial distribution function and

the orientational correlation coefficient. The results for

these are shown for the three temperatures in figure 17.

At the highest temperature the radial distribution

function is essentially unstructured and tends to its

limiting value of unity for the relatively small value, 2.0,
of r*. The lack of any structure near r* of 1.0 results

from the existence of the dimer in different conforma-

tional states, which prevents the molecules from

approaching close to each other. At the same tempera-

ture G2(r*) decreases and tends to a limiting value of

Table 2. The scaled expansion coefficients, cn/e0, in the Ryckaert–Bellemans torsional potential and the scaled bending force
constant, k/e0, used in the simulation of the Gay–Berne dimer.

c0/e0 c1/e0 c2/e0 c3/e0 c4/e0 c5/e0 kbend/e0

2.54 3.32 23.59 20.84 7.17 28.61 142.3 rad22
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zero. This value is in accord with the second rank

orientational order parameter <P2> evaluated directly

from the Q-tensor introduced by Vieillard–Baron [56].

It is clear, therefore, that at T* of 2.04 the Gay–Berne

dimer exhibits an isotropic phase.

The phase at T* of 1.14 is different. Here the radial

distribution has changed slightly from that in the

isotropic phase, see figure 17 (a). A weak peak has

appeared at r* of 1.2 which suggests there are more

molecules in the trans conformation which can

approach closer to each other. As we shall see later,

the conformational distribution has changed because of

the formation of a nematic phase at this lower scaled

temperature. The correlation coefficient, G2(r*), exhi-

bits a more pronounced peak at r* of 1.2, showing that

neighbouring molecules have a relatively high degree of

orientational correlation. This decreases as the separa-

tion between the molecules increases but does not decay

to zero. The value of G2(r*) for a separation of about 4

corresponds to an orientational order parameter of

0.36, which is in good agreement with the value of 0.33

determined from the Q-tensor. The lack of significant

structure in g(r*) together with the non-zero value of

<P2> identifies this as a nematic phase. This assignment

is consistent with the more or less uniform density

distribution along the director.

At the lowest scaled temperature of 0.90 the structure

of the radial distribution function has increased, as we

can see in figure 17 (a). The first peak, at r* of 1.2, has

grown in intensity, showing a more effective packing

of nearest neighbour molecules made possible by

an increase in the fraction of dimers in the trans

conformation. There is also a broad peak at r* of 2.5

which is suggestive of a layered structure. This view is

supported by the density distribution along the director

which has a periodic structure, albeit weak, with a

scaled periodicity, d*(;d/s0) of 2.5. The orientational

order in this phase is high as we can see from G2(r*)

shown in figure 17 (b). The intense peak at r* of 1.2

again reveals the strong correlations between neigh-

bouring molecules. The long range limit of G2(r*) gives

the orientational order parameter as 0.77, in agreement

with its direct evaluation from the Q-tensor. The phase

at T* of 0.90 is identified as a smectic A with a small

translational order but a large orientational order.

The assignment of these three phases formed by the

Gay–Berne dimer is supported by pictures of their

molecular organization taken of configurations from

Figure 17. (a) The radial distribution function, g(r*), and (b)
the second rank orientational correlation coefficient, G2 (r*),
simulated for the Gay–Berne dimer at a scaled number density
of 0.135 and at scaled temperatures of 2.04 (???), 1.14 (---) and
0.90 (—).

Figure 18. Pictures showing the molecular organization in (a) the isotropic phase at T* of 2.04, (b) the nematic phase at T* of 1.14
and (c) the intercalated smectic A phase at T* of 0.90 for the Gay–Berne dimer. The trans conformation (w,60u) is coloured blue
and the gauche conformations (w.60u) are shown as green.
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the production runs. The pictures are given in figure 18

and show three features of the system: its orientational

order, its translational order and its conformational

order. In the isotropic phase at T* of 2.04 there is no

long range translational or orientational order, see

figure 18 (a). The conformational order is, in principle,

hard to judge because the torsional angle can take any

value. In practice the dimer tends to adopt conforma-

tions approximating to either trans or gauche forms.

These have been colour coded in the image so that all

conformers for w,60u, which includes the trans form,

are blue while those with w.60u, which includes the

gauche form, are green. It is seen that the numbers of

trans and gauche conformers are essentially the same.

However, on lowering the scaled temperature to 1.14

into the nematic phase the number of trans conformers

increases significantly at the expense of the gauche form,

see figure 18 (b). The long range orientational order and

translational disorder characteristic of the nematic

phase is clearly apparent. Also shown in this and the

other pictures is the director orientation; it is indicated

by the magenta line, at the centre of the simulation box,

whose length is proportional to the orientational order

parameter. At the lower scaled temperature of 0.90 the

fraction of gauche conformers is reduced dramatically

to just a few. The trans conformers are then able to pack

into a weakly layered structure which is clearly apparent

in figure 18 (c). What is also apparent is the intercalated

structure of the smectic A phase (SmAc); that is, the

mesogenic groups of the dimer occupy adjacent layers

and do not reside in a single layer. This novel structure

explains why the scaled periodicity of the density

distribution along the director is just 2.5, which is half

the length of the dimer in its trans conformation. The

stabilization of this intercalated structure may well

result from the strong attraction between the mesogenic

groups of neighbouring dimers; it is clearly evident from

the deep potential wells apparent in the contour plots

given in figure 16 (b). It is of special interest that the

symmetric Gay–Berne dimer forms an intercalated

SmAc phase since such phases are usually exhibited by

non-symmetric liquid crystal dimers [57]. The stability

of the intercalated phase is interpreted in terms of

specific interactions between the different mesogenic

groups in adjacent molecules. However, a few sym-

metric liquid crystal dimers have also been found to

form an intercalated smectic phase which is surprising

[58]. Our observation that the symmetric model liquid

crystal dimer also forms an intercalated smectic A phase

provides some support for this.

The pictures in figure 18 clearly show, at a qualitative

level, how the probability of finding the dimers in an

elongated conformation grows as the orientational

order of the phase increases. There is, of course, a

contribution to this probability from the reduction in

the scaled temperature which accompanies the increase

in the orientational order. To quantify the changes in

the conformational probability for the Gay–Berne

dimers we have calculated the normalized torsional

distribution function, p(w), which gives the probability

of finding the dimer with a torsional angle, w,

irrespective of its orientation from the simulations.

The results of the distribution function in the three

phases are shown in figure 19. At all temperatures the

torsional distribution exhibits maxima corresponding to

the trans (w50 rad) and gauche (w<2.1 and 4.2 rad)

conformations. In the isotropic phase the distribution is

slightly higher for the trans than for an individual

gauche conformer. To place these results in context we

have calculated the distribution function that would

result solely from the torsional potential, namely

p wð Þ~Q{1
tor exp {Utors wð Þ=kBT½ �; ð40Þ

Figure 19. The torsional distribution function, p(w), obtained
from the simulations of a Gay–Berne dimer in (a) the isotropic
phase at T* of 2.04, (b) the nematic phase at T* of 1.14 and (c)
the intercalated smectic A phase at T* of 0.90. The dashed
lines show the ideal p(w) calculated solely from the Ryckaert–
Bellemans torsional potential, see equations (31) and (40).
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where the conformational partition function is

Qtor~

ð
exp {Utors wð Þ=kBT½ �dw: ð41Þ

This ideal distribution is what would be expected if the

dimer was in the gas phase and if the intramolecular

interaction between the Gay–Berne mesogenic groups

was negligible, as seems likely. The ideal distribution

functions calculated for the three temperatures, 2.04,

1.14 and 0.90, are also shown in figure 19. In the

isotropic phase the agreement between the distribution

obtained from the simulation and the ideal distribution

is very close. This suggests that the distribution is not

perturbed in the isotropic phase because the local

orientational order is small, see figure 17 (b). The

torsional distribution in the nematic phase at T* of

1.14 shows an enhancement and narrowing of the peak

associated with the trans conformation; in addition the

peaks related to the gauche conformations decrease in

intensity. The ideal distribution function also changes

because of the reduction in temperature; thus the

probability of the trans conformation relative to the

gauche increases. However, the effect is not nearly as

large as that shown by the simulations. Accordingly we

can see that the long range orientational order of the

nematic phase does have a significant influence on the

conformational distribution, enhancing the probability

of the trans form at the expense of the gauche. This

novel effect continues in the smectic Ac phase at T* of

0.90. Here the simulations show, in figure 19 (c), that

the peak associated with the trans form has grown

considerably and is almost twice as large as that in the

nematic phase. This change is consistent with the

increase in <P2> from 0.33 in the nematic to 0.77 in

the SmAc phase. In contrast, the ideal torsional

distribution at T* of 0.90 differs little from that at

1.14 in the nematic phase. It appears that the high

orientational order of the intercalated smectic A phase

has a significant effect on the torsional distribution, as

theory predicts, see equation (11).

6. Simulations of liquid crystals: the Corner S-function

potential (with A. Ghahrai and G. Saielli)

The Gay–Berne potential has proved to be an especially

valuable model for simulation studies of liquid crystal

and their behaviour [45]. This value stems in part from

the fact that the potential includes, at a generic level,

both attractive and repulsive contributions to the

anisotropic interactions. In addition, because this is a

single site potential it has a computational simplicity

which allows systems containing large numbers of

molecules to be studied. As we have seen, equation (23),

the potential takes the form

U ûiûj r
� �

~4e ûiûj r
� �

R{12{R{6
� �

; ð42Þ

where

R~ r{s ûiûj r
� �

zs0

� ��
s0: ð43Þ

It is similar to a shifted Lennard–Jones 12-6 potential.

The shape of a Gay–Berne particle is usually defined by

evaluating the contact distance when one molecule is

moved around another keeping their symmetry axes

parallel. The specific form for this, evaluated from

s ûiûj r
� �

, is ellipsoidal [46]. However, real mesogenic

rod-like molecules tend to have a shape that approx-

imates more closely to a spherocylinder [59]. In addition,

certain mesogenic molecules deviate from this shape; for

example the mesogen formed by linking two 5CB

molecules together via a platinum dichloride unit has a

structure resembling a spherocylinder with a sphere

embedded at its centre [60]. Here we consider how the

pair potential for such molecules can be constructed while

retaining the essential features of the Gay–Berne model.

One of the earlier approaches to the problem of

developing a pair potential for molecules was proposed

by Corner [61]. His seminal suggestion was that the

distance dependence of the interaction between two

molecules with fixed orientations should be given by the

Lennard–Jones 12-6 potential

U rð Þ~4e s=rð Þ12
{ s=rð Þ6

h i
ð44Þ

which was known to work well for the scalar interactions

between atoms. Its use for molecules requires that the

well depth, e, and the contact distance, s, depend on the

orientations of the two molecules and of the intermole-

cular vector joining them. He proposed particular

functional forms for those dependences relevant for

diatomic molecules, which necessarily possess cylindrical

symmetry. These expressions are not valid for the larger

length-to-breadth ratios of mesogenic molecules.

However, the key point to Corner’s suggestion is that

the pair potential for molecules can be written as a single

site potential in which the well-depth and contact

distance are orientation dependent. It is apparent,

therefore, that the Gay–Berne potential is, in fact, one

member of the class of Corner pair potentials. As we

have seen, it is not, however, able to model the

interaction between spherocylinders and those with an

embedded sphere. To achieve this we shall use a novel

approach proposed by Zewdie [62] which generalized the

functional form first suggested by Corner. Zewdie

realized that the parameters in the pair potential could

be expanded using a basis of S-functions [63]. These

are invariant functions of three relative orientations of

the cylindrical molecules, with respect to each other
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fij :ûi
:ûj

� �
and of each molecule with respect to the

intermolecular vector, fi :ûi
:r̂Þ

�
and fj :ûj

:r̂Þ
�

. The

parameters in the distance dependent pair potential,

which Zewdie took to have the Gay–Berne form, see

equation (42), are then expanded as

s fijfifj

� �
~
X

L1L2J

sL1L2JSL1L2J fijfifj

� �
ð45Þ

and

e fijfifj

� �
~
X

L1L2J

eL1L2JSL1L2J fijfifj

� �
: ð46Þ

Here L1 and L2 are positive integers and J takes values

from |L12L2| to L1+L2. For linear molecules, non-zero
values of the expansion coefficients require that the

sum L1+L2+J must be positive, and for non-polar

molecules L1, L2 and J are restricted to even values if

sL1L2J and eL1L2J are to be non-zero. The first few S-

functions, with even values of L1, L2 and J, are given

by

S000 fijfifj

� �
~1

S202 fijfifj

� �
~ 3f 2

i {1
� �.

2
ffiffiffi
5
p

S022 fijfifj

� �
~ 3f 2

j {1
� �.

2
ffiffiffi
5
p

S220 fijfifj

� �
~ 3f 2

ij {1
� �.

2
ffiffiffi
5
p

S222 fijfifj

� �
~ 2{3f 2

i {3f 2
j {3f 2

ij z9fifjfij

� �. ffiffiffiffiffi
70
p

S224 fijfifj

� �
~ 1z2f 2

ij {5f 2
i {5f 2

j {20fifjfijz35f 2
i f 2

j

� �.
4
ffiffiffiffiffi
70
p

:

ð47Þ

We can see that when J is zero the S-function depends
only on the relative orientation of the two molecules.

The expansions are formally correct so that any

particular behaviour can be represented by including

sufficient terms. Of course, for the potential to be

computationally attractive the number of terms in the

summations for the contact distance and well depth

should be minimized. This has the additional benefit of

reducing the number of arbitrary parameters that are

employed to define the potential. In practice the number

of terms used in the expansions will be a compromise

between these factors and the accuracy with which a

particular molecular structure is to be represented. In

his use of the Corner S-function potential, which we
shall refer to as the CornerS potential, to represent the

interaction between two spherocylinders with length-to-

breadth ratio of 3:1, Zewdie determined the coefficients

in the expansion of the contact distance to be those

given in table 3 [62].

Here the coefficients are scaled with s0, the diameter

of the spherocylinder. He also mapped the S-function

expansion onto the well-depth, e ûiûj r̂
� �

, proposed by
Gay and Berne and the expansion coefficients, scaled

with e0, see equation (27), are given in table 3. We have

added a sphere of diameter 1.5s0 to the spherocylinder

and have obtained the expansion coefficients for this

from the contact distances for five configurations

namely side-by-side, end-to-end, end-to-side, cross and

slipped-parallel. This is one more than the minimum

number of configurations needed to extract the
coefficients in the expansion for s(f12f1f2) restricted to

five terms since s202 and s022 must be identical from the

equivalence of the molecules. To facilitate comparison

with the results obtained for the spherocylinder, the

well-depth was taken to have the same expansion

coefficients (see table 3). We can visualize the shapes

for these two model potentials by plotting the separa-

tion when the potential changes from positive to
negative for a pair of parallel molecules. The shapes

obtained in this way are shown in figure 20 together

with that of a Gay–Berne molecule, also with a length-

to-breadth ratio of 3:1. The ellipsoidal form of the Gay–

Berne molecule is apparent and differs significantly

from that of the CornerS spherocylinder. It is noted that

this is not an exact spherocylinder presumably because

of the restriction on the number of terms in the
expansion. The embedded sphere is clearly seen in the

contact contour for the third molecule.

The system of particles with embedded spheres was

studied using an isobaric–isothermal ensemble (NPT)

rather than a canonical ensemble (NVT) [51]. This

ensemble was chosen for three reasons. First, because it

allows direct contact with experiment where measure-

ments are usually made at constant pressure. Secondly,

Table 3. The scaled expansion coefficients for the contact distance s�L1L2J and for the well depth e�L1L2J evaluated for (a) a
spherocylinder and (b) a spherocylinder with a central embedded sphere.

Molecular shape

L1L2J

000 202 022 220 222 224

(a) s�L1L2J 1.641 1.436 1.436 20.599 20.885 2.323

e�L1L2J 1.040 21.404 21.404 2.199 20.722 20.132

(b) s�L1L2J 1.834 0.933 0.933 20.658 20.678 3.331

ð47Þ
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because at the transition the system will pass directly

from one phase to the next, whereas at constant volume

the system will pass through a series of coexisting phases.

In other words the transition should be sharper at

constant pressure than at constant volume. Thirdly, the

changes in the box dimensions which occur for the NPT

Monte Carlo simulations will allow the molecules in the

orthorhombic simulation box to become commensurate

with their periodic images when the phases possess long

range translational order. In this way the simulation box

should not influence the phases that are formed or their

structure [52, 64]. The number of molecules used in the

simulation was 2 000 which is sensibly large. Since

Zewdie had used a much smaller system, just 432

molecules and a canonical ensemble, we have performed

an NPT simulation for his parameterization of the

CornerS potential. This will allow us to compare the

behaviour of a system of spherocylinders with that for

the system containing an embedded sphere.

We now consider the results of the simulations when

the scaled pressure P� :Ps3
0

�
e0

� �
was set equal to 1.0

and start with the spherocylinder. To locate the phase

transitions exhibited by this system we have determined

the scaled molecular enthalpy, H*(;H/Ne0), the scaled

molecular volume, V� :V
�

Ns3
0

� �
and the second rank

orientational order parameter for the molecular sym-

metry axis, <P2>, as a function of the scaled tempera-

ture, T*(;kBT/e0). The results for these quantities are

shown in figure 21 for both heating and cooling runs

which provide an indication of the hysterisis exhibited

at the transitions and so help to distinguish between

stable and metastable phases. It is apparent that on

cooling from the high temperature phase there is a large

jump in both H* and V* at T* of 1.25¡0.05, indicating

a strong first order transition. In the high temperature

phase <P2> is essentially zero suggesting that this is the

isotropic phase and on the other side of the transition

<P2> is about 0.8 which suggests that this is a smectic

phase. This tentative assignment is supported by the

changes in H* and V* at the transition. The jump in the

enthalpy gives the transitional entropy, DS/R, as

2.01¡0.09 which is consistent with that found for a

Figure 20. The shapes of three molecules each with a length-to-breadth ratio of 3:1. (a) A Gay–Berne molecule, (b) a CornerS
spherocylinder and (c) the same spherocylinder with a central embedded sphere having a diameter of 1.5s0.
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SmA–I transition. Similarly the relative change in the

volume, 2 V�I {V�SmA

� ��
V �I zV �SmA

� �
, is about 0.15; this

is comparable to that found for the SmA–I transition

for a Gay–Berne mesogen [47]. On cooling the system

further, there is a second first order transition at T* of

1.05¡0.05 although the changes in H* and V* are

relatively small. In addition, although there is a change

in the orientational order parameter it is also small but

this is to be expected since the limiting value of <P2> is

unity. Based on this information we are clearly unable

to speculate as to the nature of the low temperature

phase. The same behaviour is observed on heating,

suggesting that the three phases we have observed are

stable states for this model potential. There is some

hysterisis at the transitions despite the use of runs

consisting of 1M cycles and the magnitude of this

hysterisis is indicated by the error with which the

transition temperatures are quoted.

We now turn to the structural parameters obtained

from the simulations in order to identify the three

phases formed. One useful way in which to start the

identification is to visualize configurations of the

particles taken from the production run. The pictures

showing such configurations for the three phases are

given in figure 22. In the high temperature phase the

molecules are randomly oriented and devoid of long

range translational order; it is clearly an isotropic phase

as we had suggested. The next phase has a layer

structure with the molecules tending to be parallel to the

layer normal in keeping with the view that this is a

smectic A phase. The picture for the lowest temperature

phase has a similar structure and on this basis alone it is

not possible to distinguish between these phases.

However, the radial distribution functions, g(r*), shown

in figure 23 allow us to make this distinction. At a

temperature in the isotropic phase the radial distribu-

tion is essentially structureless with a single peak at a

scaled separation, r*(;r/s0), of unity, see figure 23 (a).

This peak corresponds to spherocylinders that are

nearest neighbours, probably with their symmetry axes

parallel. The lack of structure confirms the assignment

of this as an isotropic phase. The radial distribution for

the next phase, figure 23 (b), has a strong peak at r* of

unity corresponding to the packing of nearest neighbour

spherocylinders that are essentially parallel. There is a

weaker peak at r* of about 2.4 corresponding to next

nearest neighbours in the same layer; its broad shape

suggests that the translational correlations are not high.

The interpretation of the positions of the weaker peaks

at larger separations is more difficult because there are

contributions to these from spherocylinders in the same

and different layers. However, the peaks at r* of 6.5 and

9.1 could be attributed to molecules in different layers

and so reflect the layer structure of the phase.

The radial distribution for the phase at the lowest

temperature has a structure quite different from that for

the smectic A phase obtained at a higher temperature.

Thus the peaks are sharper and so more intense; in

addition the observation that they extend to r* of 10

Figure 21. The dependence on the scaled temperature, T*, of
the scaled enthalpy per molecule, H*, the scaled volume per
molecule, V*, and the second rank orientational order
parameter, SPP2T. Results obtained on cooling are denoted
by & and those on heating by %.
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shows that the phase has long range translational order.

The identity of the phase is hinted at by the observation

of two peaks at r* of about 2 which suggests that the in-

plane packing is hexagonal. The phase might be a

crystal B phase or simply a crystal. This structure has

been explored further by using a range of in-plane

distribution functions, g
nð Þ
\ r�\
� �

, which reflect the

translational correlations between molecules in the

same layer (n50) and for those in neighbouring layers

(n51) and in layers that are next nearest neighbours

(n52). The form of these g
nð Þ
\ r�\
� �

functions suggests

that the lowest temperature phase is almost certainly a

crystal. In addition, they confirm the assignment of the

intermediate phase as a smectic A, albeit one with in-

plane translational correlations that extend up to about

six neighbours which is comparable to that found for

the smectic A phase of GB(4.4,20.0,1,1) [47].

It is of relevance to compare the phase behaviour of

this CornerS spherocylinder first with that of hard

spherocylinders and then with that reported by Zewdie

for the same potential. Hard spherocylinders have been

well studied as a model for liquid crystals [65]. It is

known that in order to observe smectic behaviour the

length-to-breadth ratio should exceed 4.1:1, while to

form a nematic the ratio should be greater than about

4.7:1. When the length-to-breadth ratio is just 3:1 only

crystal and isotropic phases are formed. The observa-

tion that the CornerS spherocylinder forms a smectic A

phase shows that it must be stabilized by the anisotropic

attractive part of the potential which favours the side-

by-side arrangement of the spherocylinders. Analogous

behaviour is found for the Gay–Berne potential. Here

hard ellipsoids do not exhibit smectic phases although

the Gay–Berne mesogens certainly form smectic phases

[45]. Again these are stabilized by the anisotropic

attractive forces. The comparison with the phase

behaviour found by Zewdie [62] for the same CornerS

potential is more puzzling. He observed the following

phases; crystal, smectic B, smectic A, nematic and

Figure 22. Pictures taken of typical configurations for the three phases, (a) crystal/B, (b) smectic A and (c) isotropic, formed by
CornerS spherocylinders. The molecules are colour coded to indicate their orientations.

Figure 23. The radial distribution function, g(r*), for the
three phases formed by CornerS spherocylinders calculated at
a scaled pressure of 2.0 at T* of (a) 1.8, (b) 1.5 and (c) 1.1.
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isotropic. In marked contrast our simulations show that

the model potential leads only to crystal, smectic A and

isotropic phases. To ensure that additional phases do

not appear at different pressures the simulations were

repeated at the higher scaled pressures of 2.0 and 3.0. At

both pressures only the same three phases were formed,

albeit at different scaled temperatures; the shifts in the

scaled transition temperatures are in keeping with the

predictions of the Clapeyron equation and the transi-

tional entropy and change in volume obtained from the

simulations. In Zewdie’s simulations the scaled volume

per molecule was kept fixed at a value of 4.35. However,

this value is encompassed in our simulations at constant

pressure and it is most unlikely that we have missed the

phase transitions that he found. The other difference

between the two simulations is the system size; we have

studied 2 000 molecules whereas he investigated only

432. In addition, the system was studied on heating but

not on cooling, so that the stability of the phases formed

could not be checked. It seems likely, therefore, that the

phases formed by CornerS spherocylinders are not as

extensive as reported by Zewdie [62].

We now turn to the phase behaviour for the CornerS

spherocylinder with the central embedded sphere and

look to see how the sphere modifies the phase

behaviour. To locate the phase transitions we have

again used the temperature dependence of the scaled

molecular enthalpy, the scaled molecular volume and

the second rank orientational order parameter. The

results for these, obtained at a scaled pressure of 1.0, are

given in figure 24. On cooling from high temperature

there is a small change in H* at T* of 1.75¡0.05 and

this is matched by an equally small change in V* at a

comparable temperature. In contrast the order para-

meter shows a large change from a value of less than 0.1

in the high temperature phase to a value of greater than

0.2 but less than 0.5 in the low temperature phase (see

figure 24). Clearly we are observing the transition

between an isotropic and a liquid crystal phase. The

weakness of the transition suggests that the liquid

crystal is a nematic. Thus the transitional entropy, DS/

R, is 0.73¡0.05 which is slightly larger than that found

for a nematic, while the relative change in volume is

8.7% which is large for a real nematogen but is

comparable to the value found for the Gay–Berne

mesogen GB(4.4, 20.0, 1, 1) [47]. On lowering the

temperature further the system undergoes a second

transition at T* of about 1.25¡0.05 at which there are

large changes in both H* and V*. The changes give

DS/R as 3.2¡0.05 and the relative change in volume as

approximately 63%. These large changes are consistent

with the lower temperature phase being a crystal. On

heating, the system exhibits a pronounced hysterisis at

the low temperature transition in keeping with its strong

first order character. In contrast, there appears to be no

hysterisis at the high temperature transition, for

although this is first order it is weak.

The tentative assignment of the phases formed by

the CornerS potential for a spherocylinder with an

embedded sphere as crystal, nematic and isotropic is

consistent with the pictures showing the molecular

Figure 24. The variation with the scaled temperature, T*, of
the scaled enthalpy per molecule, H*, the scaled volume per
molecule, V*, and the second rank orientational order
parameter, SPP2T, determined on cooling (&) and on heating
(%) for the CornerS spherocylinder with an embedded sphere.
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organization given in figure 25. At the highest tempera-

ture both the molecular orientations and positions are

devoid of long range order as expected for an isotropic

phase. For the next phase the molecular orientations are

highly correlated while the centres of mass are

essentially randomly arranged. This is typical of a

nematic liquid crystal. What is interesting is the local

structure where, although the molecules tend to be

parallel, the molecular centres are displaced with respect

to each other. This slipped-parallel arrangement is

consistent with the shape quadrupole, analogous to an

electric quadrupole, created in the spherocylinder by

the embedded sphere. This slipped-parallel structure

becomes long ranged in the lowest temperature phase,

which clearly has long range translational as well as

orientational order reminiscent of a crystal whose

structure is dominated by electric quadrupolar interac-

tions. The phase assignments are further supported by

the radial distribution functions shown in figure 26. In

the high temperature phase (T*52.60) g(r*) contains a

single weak broad peak at a scaled distance of about

1.7. This is somewhat larger than the value of 1.5

expected if the spheres of neighbouring molecules were

in contact but is consistent with the slipped-parallel

local structure. At the lower scaled temperature of 1.8

the radial distribution is essentially the same as for the

isotropic phase, which confirms the assignment of this

as a nematic phase. In marked contrast the radial

distribution for the phase at the lowest scaled tempera-

ture of 1.30 is highly structured with relatively sharp

peaks. The position of the first of these at r* of 1.5 is

again consistent with a slipped-parallel arrangement for

nearest neighbours but would also be in accord with the

spheres being in contact. The picture of the molecular

arrangement in this phase (see figure 25) allows us to

distinguish between these two different structures. In

view of the slipped-parallel structure of the phase it is

difficult to identify uniquely the pairs of molecules

responsible for them. However, because of the structure

Figure 25. Pictures showing the molecular organization in the three phases (a) crystal, (b) nematic and (c) isotropic, of the
CornerS spherocylinder with an embedded sphere. The molecules are colour coded to indicate their orientations.

Figure 26. The radial distribution function, g(r*), for the
three phases formed by the CornerS spherocylinder with an
embedded sphere at a scaled pressure of 2.0 and scaled
temperatures of (a) 2.60 (b) 1.80 and (c) 1.30.
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and the long range character of g(r*) it does seem

reasonable to assign this phase as a crystal.

We see, therefore, that the introduction of a central

sphere into the spherocylinder has changed dramatically

the liquid crystal phases formed. Instead of a smectic A

phase as exhibited by the spherocylinders there is now a

nematic phase. The system of spherocylinders is able to

form a layered structure because of the strong attractive

forces stabilizing an arrangement in which the molecules

are side-by-side. The same attractive forces are present

for the spherocylinders with the embedded spheres but

now these are in competition with new packing

constraints imposed by the sphere. Two molecules clearly

pack more efficiently when parallel but displaced one

with respect to the other. This slipped-parallel arrange-

ment resulting from the shape quadrupole clearly

destabilizes the smectic A phase and leads to the

formation of a nematic phase. As might be expected

increasing the diameter of the sphere to 1.75s0 is also

found to result in the formation of a nematic rather than

a smectic A phase. However, it might also be expected

that as the diameter of the sphere is reduced a smectic

phase and a nematic could both occur. In addition, it

seems possible that the tendency to form a slipped-

parallel local structure could create a tilted smectic phase

rather than a smectic A phase. This conjecture is

supported by the observation that the addition of an

electric quadrupole to a Gay–Berne potential does indeed

result in the formation of a tilted smectic phase [66].
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